Lecture notes for Abstract Algebra: Lecture 18

1 Integral domains and fields

Let us recall our definitions:

Definition 1. A commutative ring with identity is called an integral domain if

 $a.b = 0 \implies a = 0 \text{ or } b = 0.$

Definition 2. A commutative ring with identity where **every non-zero element** has a multiplicative inverse is called a field.

A non-zero element $a \in R$ such that a.b = 0 for some non-zero element $b \in R$, is called a **divisor of zero**. An element in a ring R that has a multiplicative inverse is called **a unit** of R.

Remark 3. An integral domain is a commutative ring with identity without zero divisors. A field is a commutative ring where every non-zero element is a unit.

Proposition 4. A field F has no zero divisors. In other words, **Any field** F is an integral domain.

Proof. If a is an element of the field F and $a \neq 0$, we have a multiplicative inverse a^{-1} . If we have an equation $a \cdot b = 0$, we can multiply both sides by a^{-1} :

$$a \cdot b = 0$$
$$a^{-1} \cdot a \cdot b = a^{-1} \cdot 0$$
$$b = 0$$

Therefore, there is no element $b \neq 0$ such that $a \cdot b = 0$.

Example 5. The converse of the above proposition is not true, for example \mathbb{Z} is an example of an integral domain, that is not a field.

We have the following chain of inclusions of fields, giving by regular numerical domains:

$$\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}.$$

Example 6. Consider the ring $R = \mathbb{Z}_n$. Let $x \in R$. The existence of an element $y \in R$ such that

$$x \cdot y \equiv 1 \,(\mathrm{mod}\,n)$$

is equivalent to the existence of $y, z \in \mathbb{Z}$ satisfying the equation

$$xy - 1 = nz \iff xy - nz = 1.$$

This last equation is equivalent to gcd(n, x) = 1 and therefore an element $x \in \mathbb{Z}_n$ is a unit if and only if the greatest common divisor gcd(x, n) = 1. In particular, the ring \mathbb{Z}_p , for p a prime number, is a field. **Example 7.** If $i^2 = -1$, then the set $\mathbb{Z}[i] = \{m + ni \mid m, n \in \mathbb{Z}\}$ forms a ring known as the Gaussian integers. It is easily seen that the **Gaussian integers** are a subring of the complex numbers since they are closed under addition and multiplication. Let $\alpha = a + bi$ be a unit in $\mathbb{Z}[i]$. Then, the conjugate $\bar{\alpha} = a - bi$ is also a unit since, in general, if $\alpha\beta = 1$, the same is true for the conjugates $\bar{\alpha}\bar{\beta} = 1$. If $\beta = c + di$

$$1 = \alpha \beta \bar{\alpha} \bar{\beta} = \alpha \bar{\alpha} \beta \bar{\beta} = (a^2 + b^2)(c^2 + d^2).$$

Therefore, $a^2 + b^2$ must either be 1 or -1; or, equivalently, $a + bi = \pm 1$ or $a + bi = \pm i$ Therefore, units of this ring are $\pm 1, \pm i$; hence, the Gaussian integers are not a field. We will leave it as an exercise to prove that the Gaussian integers are an integral domain.

Example 8. The set $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field. We check that the inverse of the element $a + b\sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$ is the element $c + d\sqrt{2}$ given by

$$c + d\sqrt{2} = \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}.$$

Proposition 9. Every finite integral domain is a field.

Proof. Let D be a finite integral domain and D^* be the set of nonzero elements of D. We must show that every element in D^* has an inverse. For each $a \in D^*$ we can define a map

$$\lambda_a: D^* \longrightarrow D^*$$

given by $\lambda_a(d) = ad$. This map makes sense, because if $a, d \neq 0$, then $ad \neq 0$. The map λ_a is one-to-one, since for $d_1, d_2 \in D^*$

$$ad_1 = \lambda_a(d_1) = \lambda_a(d_2) = ad_2 \Rightarrow d_1 = d_2$$

by the left cancellation law of the integral domains. Since D^* is a finite set, the map λ_a must also be onto; hence, for some d, $\lambda_a(d) = ad = 1$. Therefore, a has a right inverse. Since D is commutative, d must also be a left inverse for a. Consequently, D is a field.

For any nonnegative integer n and any element r in a ring R we write $r + r + \cdots + r$ (n times) as nr.

Definition 10. We define the characteristic of a ring R to be the least positive integer n such that nr = 0 for all $r \in R$. If no such integer exists, then the characteristic of R is defined to be 0. We will denote the characteristic of R by char(R).

Example 11. For every prime p, the ring \mathbb{Z}_p is a field of characteristic p, every nonzero element in \mathbb{Z}_p has an inverse; hence, \mathbb{Z}_p is a field. If a is any nonzero element in the field, then pa = 0, since the order of any nonzero element in the abelian group \mathbb{Z}_p is p.

Example 12. The ring \mathbb{Z} is a ring of characteristic zero. It is not possible to find a natural number n such that $n \cdot m = 0$ for all $m \in \mathbb{Z}$. In the same way the fields \mathbb{Q}, \mathbb{R} and \mathbb{C} are all fields of characteristic zero.

Remark 13. The characteristic of a ring R with identity 1 is just the order of 1. That is, the smallest n such that $n \cdot 1 = 0$.

Proposition 14. T he characteristic of an integral domain is either a prime number or zero.

Proof. Let D be an integral domain and suppose that the characteristic of D is $n \neq 0$. If n is not prime, then n = ab, where 1 < a, b < n. The characteristic of D is the order of the identity 1 Therefore n1 = 0 and

$$0 = n1 = (ab)1 = (a1)(b1).$$

As there are no zero divisors in D, either a1 = 0 or b1 = 0. Hence, the characteristic of D must be less than n, which is a contradiction. Therefore, n must be prime. \Box

Remark 15. A field F has:

characteristic zero \iff there is a subfield of F isomorphic to \mathbb{Q} characteristic p \iff there is a subfield of F isomorphic to \mathbb{Z}_p