Lecture notes for Abstract Algebra: Lecture 18

1 Integral domains and fields

Let us recall our definitions:
Definition 1. A commutative ring with identity is called an integral domain if

$$
a . b=0 \quad \Rightarrow \quad a=0 \quad \text { or } \quad b=0 .
$$

Definition 2. A commutative ring with identity where every non-zero element has a multiplicative inverse is called a field.
A non-zero element $a \in R$ such that $a . b=0$ for some non-zero element $b \in R$, is called a divisor of zero. An element in a ring R that has a multiplicative inverse is called a unit of R.
Remark 3. An integral domain is a commutative ring with identity without zero divisors. A field is a commutative ring where every non-zero element is a unit.
Proposition 4. A field F has no zero divisors. In other words, Any field F is an integral domain.
Proof. If a is an element of the field F and $a \neq 0$, we have a multiplicative inverse a^{-1}. If we have an equation $a \cdot b=0$, we can multiply both sides by a^{-1} :

$$
\begin{aligned}
a \cdot b & =0 \\
a^{-1} \cdot a \cdot b & =a^{-1} \cdot 0 \\
b & =0
\end{aligned}
$$

Therefore, there is no element $b \neq 0$ such that $a \cdot b=0$.
Example 5. The converse of the above proposition is not true, for example \mathbb{Z} is an example of an integral domain, that is not a field.

We have the following chain of inclusions of fields, giving by regular numerical domains:

$$
\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} .
$$

Example 6. Consider the ring $R=\mathbb{Z}_{n}$. Let $x \in R$. The existence of an element $y \in R$ such that

$$
x \cdot y \equiv 1(\bmod n)
$$

is equivalent to the existence of $y, z \in \mathbb{Z}$ satisfying the equation

$$
x y-1=n z \Longleftrightarrow x y-n z=1
$$

This last equation is equivalent to $\operatorname{gcd}(n, x)=1$ and therefore an element $x \in \mathbb{Z}_{n}$ is a unit if and only if the greatest common divisor $\operatorname{gcd}(x, n)=1$. In particular, the ring \mathbb{Z}_{p}, for p a prime number, is a field.

Example 7. If $i^{2}=-1$, then the set $\mathbb{Z}[i]=\{m+n i \mid m, n \in \mathbb{Z}\}$ forms a ring known as the Gaussian integers. It is easily seen that the Gaussian integers are a subring of the complex numbers since they are closed under addition and multiplication. Let $\alpha=a+b i$ be a unit in $Z[i]$. Then, the conjugate $\bar{\alpha}=a-b i$ is also a unit since, in general, if $\alpha \beta=1$, the same is true for the conjugates $\bar{\alpha} \bar{\beta}=1$. If $\beta=c+d i$

$$
1=\alpha \beta \bar{\alpha} \bar{\beta}=\alpha \bar{\alpha} \beta \bar{\beta}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) .
$$

Therefore, $a^{2}+b^{2}$ must either be 1 or -1 ; or, equivalently, $a+b i= \pm 1$ or $a+b i= \pm i$ Therefore, units of this ring are $\pm 1, \pm i$; hence, the Gaussian integers are not a field. We will leave it as an exercise to prove that the Gaussian integers are an integral domain.

Example 8. The set $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field. We check that the inverse of the element $a+b \sqrt{2}$ in $\mathbb{Q}(\sqrt{2})$ is the element $c+d \sqrt{2}$ given by

$$
c+d \sqrt{2}=\frac{a}{a^{2}-2 b^{2}}+\frac{-b}{a^{2}-2 b^{2}} \sqrt{2} .
$$

Proposition 9. Every finite integral domain is a field.
Proof. Let D be a finite integral domain and D^{*} be the set of nonzero elements of D. We must show that every element in D^{*} has an inverse. For each $a \in D^{*}$ we can define a map

$$
\lambda_{a}: D^{*} \longrightarrow D^{*}
$$

given by $\lambda_{a}(d)=a d$. This map makes sense, because if $a, d \neq 0$, then $a d \neq 0$. The map λ_{a} is one-to-one, since for $d_{1}, d_{2} \in D^{*}$

$$
a d_{1}=\lambda_{a}\left(d_{1}\right)=\lambda_{a}\left(d_{2}\right)=a d_{2} \Rightarrow d_{1}=d_{2}
$$

by the left cancellation law of the integral domains. Since D^{*} is a finite set, the map λ_{a} must also be onto; hence, for some $d, \lambda_{a}(d)=a d=1$. Therefore, a has a right inverse. Since D is commutative, d must also be a left inverse for a. Consequently, D is a field.

For any nonnegative integer n and any element r in a ring R we write $r+r+\cdots+r$ (n times) as $n r$.

Definition 10. We define the characteristic of a ring R to be the least positive integer n such that $n r=0$ for all $r \in R$. If no such integer exists, then the characteristic of R is defined to be 0 . We will denote the characteristic of R by $\operatorname{char}(R)$.

Example 11. For every prime p, the ring \mathbb{Z}_{p} is a field of characteristic p, every nonzero element in \mathbb{Z}_{p} has an inverse; hence, \mathbb{Z}_{p} is a field. If a is any nonzero element in the field, then $p a=0$, since the order of any nonzero element in the abelian group \mathbb{Z}_{p} is p.

Example 12. The ring \mathbb{Z} is a ring of characteristic zero. It is not possible to find a natural number n such that $n \cdot m=0$ for all $m \in \mathbb{Z}$. In the same way the fields \mathbb{Q}, \mathbb{R} and \mathbb{C} are all fields of characteristic zero.

Remark 13. The characteristic of a ring R with identity 1 is just the order of 1 . That is, the smallest n such that $n \cdot 1=0$.

Proposition 14. The characteristic of an integral domain is either a prime number or zero.

Proof. Let D be an integral domain and suppose that the characteristic of D is $n \neq 0$. If n is not prime, then $n=a b$, where $1<a, b<n$. The characteristic of D is the order of the identity 1 Therefore $n 1=0$ and

$$
0=n 1=(a b) 1=(a 1)(b 1) .
$$

As there are no zero divisors in D, either $a 1=0$ or $b 1=0$. Hence, the characteristic of D must be less than n, which is a contradiction. Therefore, n must be prime.

Remark 15. A field F has:
characteristic zero \Longleftrightarrow there is a subfield of F isomorphic to \mathbb{Q} characteristic $\mathbf{p} \Longleftrightarrow$ there is a subfield of F isomorphic to \mathbb{Z}_{p}

