
Lecture notes for Abstract Algebra: Lecture 18

1 Integral domains and fields

Let us recall our definitions:

Definition 1. A commutative ring with identity is called an integral domain if

a.b = 0 ⇒ a = 0 or b = 0.

Definition 2. A commutative ring with identity where every non-zero element
has a multiplicative inverse is called a field.

A non-zero element a ∈ R such that a.b = 0 for some non-zero element b ∈ R, is
called a divisor of zero. An element in a ring R that has a multiplicative inverse is
called a unit of R.

Remark 3. An integral domain is a commutative ring with identity without zero
divisors. A field is a commutative ring where every non-zero element is a unit.

Proposition 4. A field F has no zero divisors. In other words, Any field F is an
integral domain.

Proof. If a is an element of the field F and a 6= 0, we have a multiplicative inverse
a−1. If we have an equation a · b = 0, we can multiply both sides by a−1:

a · b = 0

a−1 · a · b = a−1 · 0
b = 0

Therefore, there is no element b 6= 0 such that a · b = 0.

Example 5. The converse of the above proposition is not true, for example Z is an
example of an integral domain, that is not a field.

We have the following chain of inclusions of fields, giving by regular numerical do-
mains:

Q ⊂ R ⊂ C.

Example 6. Consider the ring R = Zn. Let x ∈ R. The existence of an element
y ∈ R such that

x · y ≡ 1 (modn)

is equivalent to the existence of y, z ∈ Z satisfying the equation

xy − 1 = nz ⇐⇒ xy − nz = 1.

This last equation is equivalent to gcd(n, x) = 1 and therefore an element x ∈ Zn is
a unit if and only if the greatest common divisor gcd(x, n) = 1. In particular,
the ring Zp, for p a prime number, is a field.
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Example 7. If i2 = −1, then the set Z[i] = {m+ ni |m,n ∈ Z} forms a ring known
as the Gaussian integers. It is easily seen that the Gaussian integers are a subring
of the complex numbers since they are closed under addition and multiplication. Let
α = a + bi be a unit in Z[i]. Then, the conjugate ᾱ = a − bi is also a unit since, in
general, if αβ = 1, the same is true for the conjugates ᾱβ̄ = 1. If β = c+ di

1 = αβᾱβ̄ = αᾱββ̄ = (a2 + b2)(c2 + d2).

Therefore, a2 + b2 must either be 1 or −1; or, equivalently, a+ bi = ±1 or a+ bi = ±i
Therefore, units of this ring are ±1,±i; hence, the Gaussian integers are not a field.
We will leave it as an exercise to prove that the Gaussian integers are an integral
domain.

Example 8. The set Q(
√

2) = {a + b
√

2 | a, b ∈ Q} is a field. We check that the
inverse of the element a+ b

√
2 in Q(

√
2) is the element c+ d

√
2 given by

c+ d
√

2 =
a

a2 − 2b2
+

−b
a2 − 2b2

√
2.

Proposition 9. Every finite integral domain is a field.

Proof. Let D be a finite integral domain and D∗ be the set of nonzero elements of
D. We must show that every element in D∗ has an inverse. For each a ∈ D∗ we can
define a map

λa : D∗ −→ D∗

given by λa(d) = ad. This map makes sense, because if a, d 6= 0, then ad 6= 0. The
map λa is one-to-one, since for d1, d2 ∈ D∗

ad1 = λa(d1) = λa(d2) = ad2 ⇒ d1 = d2

by the left cancellation law of the integral domains. Since D∗ is a finite set, the map
λa must also be onto; hence, for some d, λa(d) = ad = 1. Therefore, a has a right
inverse. Since D is commutative, d must also be a left inverse for a. Consequently,
D is a field.

For any nonnegative integer n and any element r in a ring R we write r+ r+ · · ·+ r
(n times) as nr.

Definition 10. We define the characteristic of a ring R to be the least positive in-
teger n such that nr = 0 for all r ∈ R. If no such integer exists, then the characteristic
of R is defined to be 0. We will denote the characteristic of R by char(R).

Example 11. For every prime p, the ring Zp is a field of characteristic p, every
nonzero element in Zp has an inverse; hence, Zp is a field. If a is any nonzero element
in the field, then pa = 0, since the order of any nonzero element in the abelian group
Zp is p.
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Example 12. The ring Z is a ring of characteristic zero. It is not possible to find a
natural number n such that n ·m = 0 for all m ∈ Z. In the same way the fields Q,R
and C are all fields of characteristic zero.

Remark 13. The characteristic of a ring R with identity 1 is just the order of 1.
That is, the smallest n such that n · 1 = 0.

Proposition 14. T he characteristic of an integral domain is either a prime number
or zero.

Proof. Let D be an integral domain and suppose that the characteristic of D is n 6= 0.
If n is not prime, then n = ab,where 1 < a, b < n. The characteristic of D is the
order of the identity 1 Therefore n1 = 0 and

0 = n1 = (ab)1 = (a1)(b1).

As there are no zero divisors in D, either a1 = 0 or b1 = 0. Hence, the characteristic
of D must be less than n, which is a contradiction. Therefore, n must be prime.

Remark 15. A field F has:

characteristic zero ⇐⇒ there is a subfield of F isomorphic to Q

characteristic p ⇐⇒ there is a subfield of F isomorphic to Zp
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